

AFRL-RI-RS-TR-2008-95
Final Technical Report
March 2008

HIGH PRODUCTIVITY COMPUTING SYSTEMS
(HPCS) LIBRARY STUDY EFFORT

University of Tennessee

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. AD60

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-95 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

CHRISTOPHER J. FLYNN JAMES A. COLLINS, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Aug 06 – Aug 07
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-06-1-0239

4. TITLE AND SUBTITLE

HIGH PRODUCTIVITY COMPUTING SYSTEMS (HPCS) LIBRARY
STUDY EFFORT

5c. PROGRAM ELEMENT NUMBER
62303E

5d. PROJECT NUMBER
AD60

5e. TASK NUMBER
TE

6. AUTHOR(S)

Jack Dongarra, James Demmel, Piotr Luszczek, Parry Husbands,

5f. WORK UNIT NUMBER
NN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Tennessee
1534 White Ave
Knoxville TX 37996-1529

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITB Defense Advanced Research Projects Agency
525 Brooks Rd 3701 North Fairfax Drive
Rome NY 13441-4505 Arlington VA 22203-1714

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-95

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-1134

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The research team explores a rich feature set, large algorithmic variety, and detailed
implementation considerations for one of the most fundamental computational kernels of
computational science: LU factorization of a dense matrix by Gaussian elimination with partial
pivoting. For the target implementation platforms and systems, they analyze and compare
established shared and distributed memory environments as well as relatively new Partitioned
Global Address Space programming languages, which include those coming from the High Productivity
Computing Systems (HPCS) project. To give quantitative measures of each hardware platform metrics,
combined with implementation characteristics, they compare scalability, raw and relative
performance as well as the source code features, functionality, and absolute size breakdown as
measured by Source Lines of Code (SLOC).

15. SUBJECT TERMS
LU factorization, scalability, productivity

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher J. Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

21
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Table of Contents
1. Overview ..1
2. LU Factorization and its Implementation Challenges ..1
3. Mapping to languages & Software Metrics ..2
4. Survey of programming languages and environments used in the study....................................3
5. Survey of hardware platforms used in the study...4
6. Survey of implementations ...5
7. Relating program development effort to performance..9
8. Writing in an HPCS Language ...10
9. Portability issues...11
10. Automatic performance tuning of numerical kernels ...11
11. Program analysis and semi-automatic program tuning...12
12. Software environment for future DARPA computing platforms..12
13. Collaboration with the HPCS hardware and language developers ...13
14. High performance languages workshop ...14
15. Conclusions ..14
16. Acknowledgment..15
17. References...15
Acronyms………………………………………………………………………………………….. 17

List of Tables

1. Findings ..6
2. Services & Abstractions of Languages……………. ...7
3. Performance of those codes that strive for high performance ..8
4. Line Counts………………………………………... ...8
5. SLOC counts for Cilk, UPC, and PLASMA………. ...9

1

1. Overview

In this report we present our research into the implementation of numerical libraries using the
proposed HPCS languages. Faced with the fact that the community has very little application
experience (the implementations are not yet mature) with these languages, we chose a somewhat
atypical approach: perform a case study of parallel Lower, Upper (LU) factorization and
determine how this kernel can be implemented in the languages. As such we decided to gather
various algorithmic techniques that have been successful and make connections to specific HPCS
language features.

We settled on parallel LU factorization for a variety of reasons:

- It is a well known, understandable kernel
- Many implementations exist that span the performance spectrum
- Getting it to perform well in parallel on distributed memory machines reveals many

programming issues, solutions to which aren’t well represented in traditional languages.

In Section 2 we give a short description of the algorithm and outline some of the roadblocks to
high performance. Section 3 presents some of the abstraction issues that arise when comparing
the implementation of different versions of the algorithm in different languages. Sections 4 and 5
describe the utilized software and hardware environments, respectively. Section 6 contains our
survey of the implementations. In Section 7 we relate development effort to performance. We
detail our observations regarding implementing a high performance LU code in an HPCS
language in Section 8. Sections 9-11 discuss issues such as portability, automatic performance
tuning and semi-automatic program tuning. In Section 12 we describe the types of software
development tools needed for the DARPA platforms. Section 13 is reserved for discussing
feedback given to HPCS hardware and language developers while Section 14 discusses results
from the study workshop. And finally, Section 15 contains the conclusion.

2. LU Factorization and its Implementation Challenges

LU factorization attempts to decompose a general matrix A into a unit lower triangular (L) and
upper triangular matrix (U). Row permutations are typically used for numerical stability and so a
permutation matrix (P) is also generated such that LU=PA. The basic algorithm for this is
shown below, assuming a square n x n matrix A:
for i = 1 to n-1

 find maximum absolute element in column i below the diagonal
 swap the row of maximum element with row i
 scale column i below diagonal by 1/A(i,i)

L(i,i)=1
for j = i+1 to n
 L(j,i)=A(j,i)/A(i,i)

 Set row i of U
for j = i to n
 U(i,j)=A(i,j)

2

 Perform a “trailing matrix update”, i.e. update the part of the matrix below and to the
right of A(i,i)
for j=i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k)-L(j,i)*U(i,k)

This step can equivalently be expressed as a “rank-one update”:
 A(i+1:n,i+1:n) = A(i+1:n,i+1:n) -
 L(i+1:n,i)*U(i,i+1:n)

In order to achieve high performance through the use of Level 3 Basic Linear Algebra
Subprograms (BLAS-3) (matrix-matrix) [10, 11, 12, 13] operations, implementers usually express
the algorithm in block form. Challenges to high performance in a parallel setting include
management of the following:

- Communication for the row exchanges, updates to L and U, and the trailing matrix
updates

- The dependencies in the algorithm

At this point it is interesting to note that sometimes the abstractions provided by a particular
environment might inhibit optimization possibilities. A primary example of such inhibition is the
set of design decisions that led to the creation of the Scalable Linear Algebra Package
(ScaLAPACK) library [2, 8].

The ScaLAPACK library implementers focused on two primary aspects of large scale parallel
computing: scalability and portability. The former was addressed by the choice of appropriate
parallel data organization and use of established parallel algorithms that could be proven to scale
on distributed memory computers. However, the latter aspect reduced the available optimizations
to a subset that can be implemented on major variants of parallel hardware. Consequently, the
ScaLAPACK code employs a lock-step method that is characterized by heavy synchronization
and lack of overlap of communication and computation in the temporal sense (in the spatial sense
there exists some overlap as some of the processors are computing while others are
communicating data between each other). As a result, ScaLAPACK is easily ported on any
existing parallel platform, but its performance can be easily matched and often exceeded by codes
targeted at a specific architecture.

3. Mapping to languages & Software Metrics

In this Section we discuss how we developed metrics that guide us through implementations in
languages at differing levels of abstraction, the key criticism leveled against using source lines of
code (SLOC). In the survey to follow we augment traditional SLOC counts with an indication of
the various helper abstractions that were used. These abstractions can either be serial or parallel.
In the serial case we primarily have matrix abstractions: use of the familiar “triplet” notation for
indexing, built-in matrix operators (\ - backslash, for example, in MATLAB), and “advanced”
object oriented features. In addition, we assume that uniprocessor BLAS are provided. The
parallel space is more diverse. Languages can provide some subset of any of the following:

3

- First class distributed arrays
- A global address space
- Data parallelism
- Multithreading
- Atomic transactions
- Advanced synchronization (single/sync variables, clocks, etc.)
- Parallel Matrix Abstractions such as the Parallel BLAS (PBLAS) [2] and Basic Linear

Algebra Communication Subprograms (BLACS) [14].

For those implementations that are concerned with high performance, we also measure the best
performance attained (absolute and % of peak), the number of processors on which this was
measured (an indication of scalability) and, where available, uniprocessor performance (which
tells us something about parallel overheads).

4. Survey of programming languages and environments used in the study

The following languages and programming environments were used in this study:
1. MATLAB is a high level language and programming environment with built-in

multidimensional arrays. It is a commercially supported product available on a variety of
modern processors and operating systems. It is particularly well suited for numerical
computations including the LU factorization presented in this report.

2. Octave is a high level language that aims to be an open source implementation of
MATLAB. The current version of Octave allows implementation of the LU factorization
algorithm presented in this report.

3. Python is a high level language that has an open source implementation. Python
combined with an open source numerical extension can be used to implement the LU
factorization algorithm presented in this report.

4. CAF stands for Co-Array Fortran. It is an extension of the Fortran language to allow a
partitioned global address space paradigm. The extensions defined by CAF are planned to
be incorporated in the Fortran 2008 standard. CAF is currently implemented on vector
supercomputers such as Cray X1 and clusters of reduced instruction set computer (RISC)
processors that use an interconnect fabric with support for one-sided communication.

5. UPC stands for Unified Parallel C [16, 23]. It is an extension of the C programming
language to support a partitioned global address space paradigm. Open source
implementations of UPC support a wide spectrum of systems including high end
supercomputers as well as commodity clusters with commodity interconnects.

6. X10 [15] is a research language developed by IBM for the HPCS program. The language
is based on Java syntax with multiple extensions to allow partition global address space
programming. Current implementations integrated well with the Eclipse programming
environment and generate Java Virtual Machine bytecode as well as native code for
performance.

7. Chapel [7] is a research language developed by Cray for the HPCS program. The
language is based on the syntax of the Z programming language. There are many
constructs to allow partition global address space programming and manipulation of

4

multidimensional arrays. The current implementation focuses on generating native code
for performance.

8. Fortress [1] is a research language developed by Sun Microsystems for the HPCS
program. The language has many constructs to allow partition global address space
programming as well as other common programming paradigms such as Object Oriented
Programming. The current implementation focuses on generating bytecode for the Java
Virtual Machine.

9. HPF stands for High Performance Fortran. It is an extension of the Fortran programming
language that transforms sequential code into Single Instruction Multiple Data (SIMD)
program by using inline comments. As such, the resulting code can run both sequentially
with a standard Fortran compiler that ignores the inline comments but it can also run in
parallel by taking advantage of the user-supplied parallelization hints that come from the
inline comments.

10. Fortran 77 is the language chosen for implementation of widely used numerical libraries
including BLAS, LAPACK, and ScaLAPACK. Even though the Fortran 77 standard has
been superseded by new versions of the Fortran standard, it is still widely supported and
most compilers are able to compile code written in Fortran 77 on most of today’s
computing platforms.

11. Titanium is a programming language that is a superset of Java. The additional syntax and
libraries allow partitioned global address space programming on top of the global address
space networking (GASnet) communication substrate. Titanium programs are compiled
into native code for maximum performance but still offer many benefits of bytecode and
execution inside Java Virtual Machine.

12. C is the implementation language used by the High Performance Linpack code. A
reference implementation of a scalable version of the Linpack benchmark [20, 22]
requires an implementation MPI library [19, 21] for communicating between processors
of a parallel computer. The linker and the runtime of the C programming language is
usually used by all other languages, and C is often used as the compilation target for
many of the languages used in this study.

13. Cilk is an extension of the C programming language that is targeted for symmetric
multiprocessing (SMP) computers and lets the programmer specify parallelism in the
code by use of new keywords. The new keywords are meant to give the Cilk runtime
hints of parallelism inherent in the code. When the new keywords are removed, Cilk code
reduces to standard C. Cilk runtime implements light-weight threading and is one of the
first to use the work-stealing technique that has been recently popularized by Intel’s
Thread Building Blocks.

14. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project
aims to address the critical and highly disruptive situation that is facing the Linear
Algebra and High Performance Computing community due to the introduction of multi-
core architectures [4, 5, 6, 18].

5. Survey of hardware platforms used in the study

The following hardware platforms were used to obtain performance results for this study:
1. Cray X1 is a computer that features vector processors connected by a proprietary

interconnect called NUMAlink. The machine is an example of hardware supported global
address space. Cray X1 uses the NUMAlink interconnect in a slightly different way than
SGI machines do; the cache coherency protocol is the main difference.

5

2. SGI Altix is a computer that features Intel Itanium processors connected by a proprietary
interconnect called NUMAlink. The machine is a ccNUMA (cache coherent Non-
Uniform Memory Access) architecture; the main memory access times vary depending
on where the memory modules are located and the communication happens via a cache
coherency protocol.

3. Itanium cluster with Quadrics interconnect features a high end Intel Itanium processor (a
very long instruction word (VLIW) architecture) with a proprietary interconnect
optimized for message passing interface (MPI) applications.

4. BlueGene/L is a supercomputer architecture that features a low power PowerPC 440
processor and a proprietary torus interconnect. It is a low power design that can scale to
hundreds of thousands of processors.

5. Intel Clovertown is an Intel Core 2 architecture that features 4 cores on a single chip. The
tested system had two chips totaling 8 cores. It allows multithreaded programming as
well as explicit message passing paradigm.

6. Intel Pentium 4 cluster with an Ethernet interconnect combines a commodity processor
with a commodity interconnect. The primary programming model is message passing.

6. Survey of implementations

It is of course arguable how representative such codes are, but the fact that we can easily obtain
versions of this algorithm for current and future languages are of interest to HPCS. We present
our findings in Table 1 below (the following is a description of the table column headers).

1. Language: The main language used for the implementation
2. Author: the person who wrote the code
3. Method: method used to factorize

a. Vectorized (calling BLAS-1)
b. Blocked (calling BLAS-3)
c. Recursive
d. Parallel
e. 1-D, 2-D
f. Local factorization variants...
g. Library-based (calling optimized library, perhaps written in a different language)

4. Pivoting: is partial pivoting done?
5. Blocking: are blocked calls to BLAS made?
6. Driver: is driver code included with matrix generation, etc?
7. SLOC: number of lines in editor (excluding large blocks of comments)
8. Distribution: parallel distribution type (or 0-D for sequential codes)
9. Lookahead: Can the code overlap panel factorizations with trailing matrix updates?
10. Dist. Mem?: Can this code run on distributed memory machines?
11. Reuse L,U: Can L and U be reused for further solves after the factorization is complete?

6

12. Features: Any other important features of the code. For example, examples suitable for
teaching purposes are marked as “simple”.

Table 1. Findings

Language Author Method Pivot-
ing

Block-
ing

Driver SLOC Dist Look-
ahead

Dist.
Mem?

Reuse
L,U

Features

MATLAB Cleve Moler Outer
product,
row-wise

Yes No No 37 0-D No No Yes Simple

Octave Jason Riedy Recursive Yes Yes No 130 0-D No No Yes Algorithm by
Sivan Toledo

Python Piotr
Luszczek

Outer
product

Yes No No 40 0-D No No Yes Simple

Python Piotr
Luszczek

Outer
product

Yes Yes No 95 0-D No No Yes Library

CAF Robert
Numrich

Outer
product

Yes No Yes 1000 2-D No Yes Yes Simple, long

CAF John Reid Outer
product

Yes Yes Yes 200 1-D No Yes Yes Simple

CAF Robert
Numrich

Outer
product

Yes Yes Yes 120 2-D No Yes Yes CafLib,
SLOC 9222

UPC Parry
Husbands

Outer
product

Yes Yes Yes 5100 2-D Yes
(Dynamic)

Yes U, not
L

Fast

UPC Calin
Cascaval

Outer
product

Yes Yes Yes 536 2-D No Yes Simple

X10 Vivek
Sarkar

Outer
product

Yes No Yes 167 2-D No (?) Yes* Yes Simple

Chapel Brad
Chamberlain

Outer
product,
row-wise

Yes No No 40 0-D No (?) Yes* Yes Simple

Fortress Guy Steele,
Jan Willem-
Massen

Outer-
product,
row-wise

Yes No Yes 100 0-D No (?) Yes* Yes Simple

HPF M.
Nakanishi

Outer
product

Yes No No 70 1-D No (?) Yes Yes Simple

HPF Anotine
Petitet

Outer
product

Yes Yes Yes 25 2-D No (?) Yes Yes Library

7

LINPACK Cleve Moler Outer
product,
vectorized

Yes No No 60 0-D No No Yes dgefa

LAPACK LAPACK
team

Outer
product

Yes Yes No 100+
100

0-D No No Yes Dgetrf dgetf2

ScaLAPACK Antoine
Petitet

Outer
product

Yes Yes No 180+
140

2-D No Yes Yes PDGETRF
PDGETF2

HPL Antoine
Petitet

Outer
product

Yes Yes Yes 5000+ 2-D Yes
(Static)

Yes U, not
L

Titanium Simon Yau Outer
product

No Yes Yes 388 No Yes

C PLASMA
team

Outer
product

Yes Yes Yes 400 2-D Yes
(Dynamic)

No Yes Multithreaded

C Panziera and
Baron

Outer
product

Yes Yes Yes 2-D Yes
(Dynamic)

Yes U, not
L

Multithreaded
(up to 512p)
+ MPI

Cilk Bradley
Kuszmaul

Recursive Yes Yes Yes 266 0-D No Multithreaded

* global address space rather than distributed address space

Because the level of abstraction varies widely among the various languages, it is beneficial to
comment on the services and abstractions that each language provides.

Table 2. Services & Abstractions of languages

Language Services & Abstractions
Matlab triplet, BLAS as operators, data parallel abstraction

Python triplet, BLAS as operators, data parallel abstraction

CAF triplet, first class distributed arrays, global address space

UPC first class distributed arrays, global address space

X10 first class distributed arrays, global address space, data parallel + multithreading, “clocks”,
atomics, “advanced” OO

Chapel first class distributed arrays, global address space, data parallel + multithreading, atomics,
“advanced” OO

Fortress first class distributed arrays, global address space, data parallel + multithreading, atomics,
“advanced” OO

HPF triplet, first class distributed arrays, data parallel

f77/f90 triplet, PBLAS, BLACS

Titanium first class distributed arrays, global address space

Cilk multithreading,

Table 1 above and Table 3 below, which relates languages used with performance, are
discussed in greater detail in section 7.

8

Table 3. Performance of those codes that strive for high performance.

Language Author Best Performance
GFlop/sec

p Machine % peak Best 1p
%peak

CAF Robert Numrich 509 60 Cray X1 71.0 92.1

UPC Parry Husbands 2249 512 Itanium/Quadrics 78.4 91.8

UPC Calin Cascaval 118 256 BG/L 16.4 52.5

HPL Antoine Petitet 280600 131072 BG/L 76.4 80.1

C PLASMA team 48.5 8 Intel Clovertown 57.0 70.3

C Panziera and Baron 51870 10160 SGI Altix
Cluster

85.1 90.1

ScaLAPACK Antoine Petitet 44 64 Intel Pentium 4
cluster

14.3 47.0

Taking LAPACK's code as an example, Table 4 below provides a breakdown of line counts of
various sections of the code:

Table 4. Line counts.

 DGETRF DGETF2 Total Percentage

Leading comments 36 36 72 24.4%

Blank comments 50 43 93 31.5%

Other comments 19 13 32 10.8%

Total comments 105 92 197 67%

Declarations 11 11 22 7.5%

Argument checking 14 14 28 9.5%

Real work 30 18 48 16%

Total 160 135 295

Consequently, the total length can be thought of as anywhere from 48 SLOC (for "real work") up
to 295 SLOC. And we ignore the code in the library calls to the Basic Linear Algebra
Subprograms (BLAS): Double-precision General Rank 1 (DGER), Double-precision Scale
(DSCAL), Double-precision Swap (DSWAP), Double-precision General Matrix-Matrix multiply
(DGEMM), Double-precision Triangular Matrix Solve Matrix (DTRSM) as well as LAPACK's
auxiliary routines: Double-precision LAPACK Auxiliary Swap (DLASWP) and Integer

9

LAPACK Auxiliary Environment (ILAENV). Furthermore, this hardly captures the level of effort
in the PBLAS or BLACS, which were designed with a lot more generality and complexity in
mind than needed for ScaLAPACK's Parallel Double-precision General Triangular Factorization
(PDGETRF) subroutine alone. In comparison, the Unified Parallel C (UPC) version [17]
sacrifices the generality and builds the complexity from scratch, and so comes in last in the SLOC
metric (if SLOC could be considered as a metric).

 Table 5. SLOC counts for Cilk, UPC, and
PLASMA.

7. Relating program development effort to performance

Analysis of tables 1 and 3 gives us insight into the interaction of the development effort and
resulting execution performance. In addition, combining this with information from table 2 shows
how the software environment can alleviate the effort and increase the performance. The main
conclusion is that, on current and future architectures, a high percentage of peak performance can
only be achieved with a non-trivial amount of coding regardless of the programming language
involved. This emphasizes the importance of high quality software libraries available across the
HPCS platforms.

Another important conclusion is that scalable code does not necessarily achieve a high percentage
of peak performance regardless of the amount of lines of code involved, if either lower-level
computation and communication primitives are not fully used or the hardware does not expose
sufficient amount of parallelism and latency hiding. This point will be further stressed by the
HPCS platforms, which will have a large computational and communication potential available
through multi-faceted programming languages that promise to offer various concurrency
primitives. Delivering highly optimized numerical kernels will have to take advantage of both and
will involve non-trivial amounts of coding.

Finally, reducing coding effort without sacrificing execution performance requires the ability to
freely compose software modules. By so doing we were able to isolate performance critical
portions of many of the codes studied. Basic compositing functionality, such as object-oriented
programming and dynamic library linking, is promised to be included in HPCS languages and
operating system services.

UPC

Category SLOC
Serial Kernels 82

LU 34

Backsolve 51

Trailing Matrix 22

Cilk

Category SLOC
Scheduler 190

Panel Factorization 10

Trailing Matrix Updates 70

Driver 100

Comments 30

PLASMA

Category SLOC
Threading Package 215

Panel Factorization 1002

Update to U 110

Trailing Matrix Update 454

Back Substitution 368

10

8. Writing in an HPCS Language

From our survey, we can conclude that while pure data parallel approaches to writing LU
factorization can produce compact code, they do not perform particularly well. This leads us to
consider alternative approaches. Because all of the HPCS languages include task parallel
facilities and bearing in mind that the simple alternative of simulating a single program multiple
data (SPMD) code such as High Performance Linpack (HPL) is always available, we consider the
issues involved in writing task parallel LU factorization codes.

We restrict our attention here to multithreaded implementations which have enjoyed a resurgence
in recent years. Because our results indicate that blocking and look-ahead are required for
performance, we also focus on these two aspects. Blocking is primarily provided by the matrix
abstraction while support for look-ahead is dependent on the parallel control flow and
synchronization primitives in the language.

Multithreaded approaches have some potential advantages on distributed memory machines:

• Better communication latency tolerance
• Look-ahead (algorithmic latency tolerance) is dynamic leading to improved machine

utilization
There are, however, some costs:

• User control over the schedule is needed in order to minimize parallel execution time.
• User (or system) control over the amount of buffering required in distributed memory

machines.

The scheduling issue is paramount for performance. It essentially comes down to scheduling a
directed acyclic graph (DAG) of tasks on each of the processors. These tasks correspond to the
major operations of the algorithm, and edges between them represent dependencies that must be
satisfied before the task can run. In the dense linear algebra case, the tasks and dependencies are
statically determined by the matrix size and block size. In more complex algorithms, the tasks
and edges may be dynamically determined by the data.

Ultimately the scheduler (either a global or many local ones) must decide, for each
processor/core, the “best” task to run at any given time, knowing which dependencies have
already been met and some information (flops, running time) about the task pool. The difficulty
lies in the definition of “best”. There are many, possibly competing requirements:

• The task must advance the parallel execution of the algorithm. The scheduler’s decision
should delay other tasks as little as possible. This is also known as the “critical path”
issue.

• The sequence of tasks run on any given processor/core should incur as few cache misses
as possible (this may compete with the previous requirement). Because of the dominance
of BLAS-3 operations in LU factorization, this is less of an issue here.

• The tasks must be chosen so that buffer memory is not exceeded.

11

The definition and implementation of protocols for interacting with schedulers is, however, still a
research topic (and so have been excluded from the HPCS languages). As such, schedulers have
traditionally been built in an application specific manner using parallel control flow features
(spawns and waits) combined with various data structures, such as scoreboards for keeping track
of dependencies. Thread priorities are also another way of influencing the scheduler, but to our
knowledge this hasn’t been widely used in scientific computing codes. We anticipate the use of
similar techniques in X10, Fortress, and Chapel. Features in these languages for task control
include single and sync variables (for producer consumer relationships), spawns with locality
directives, guarded statements (that fire when a condition is satisfied), and atomic regions. These
are the basic tools that will be used for constructing schedulers [3].

9. Portability issues

Achieving portability could be a daunting task on the HPCS platforms even though there are only
a projected few of them. At the most fundamental level there exist serious nomenclature
disparities between the participating hardware vendors, even though the subject matter remaining
seems to be quite unified. This issue was brought to the vendors’ attention at the language
workshop (see Section 14).

A related issue is the programming languages being developed by the HPCS vendors. It would be
very hard to deliver a high quality numerical kernel library in more than one programming
language. And the difficulty becomes yet greater when considering any non-trivial scientific
code. This issue, again, was raised during the language workshop and with vendors’
understanding.

A likely portability layer could emerge at the library level; each of the HPCS platforms should
offer compatible software interfaces to high quality numerical kernels such as LU factorization.
Multi-language banding can already be done in portable fashion and has ongoing support of
various DOE sites.

Finally, we also envision some level of portability at the basic runtime level. This will unify
operating system and messaging primitives to successfully build the aforementioned libraries in a
portable manner. A cross-platform messaging runtime on HPCS platforms is an on-going effort
within HPCS as discussed during the language workshop (see Section 14).

10. Automatic performance tuning of numerical kernels

Automatic performance tuning is a viable approach for achieving high performance when dealing
with complex computer architectures, which is especially important for HPCS hardware. The
optimal performance search space will certainly grow in size as we move the tuning process to
future hardware. The code that we have chosen as the primary case study, LU factorization with
pivoting, exposes multiple aspects of automation. At the most basic level, automatic tuning
addresses the basic computer architecture artifacts such as register file, cache structure, and
memory hierarchy. On even more complex processors, the tuning process will inadvertently need
search space pruning techniques with a cautious choice of eliminated parameter subspaces. We
envision here a hierarchical approach to tuning whereby at different levels of the hierarchy the
tuning space is pruned differently, yielding varying amounts of tuning time and possibly different

12

results in performance achieved by the resulting code. We also recognize higher level parameters
that will be amenable to automatic performance tuning especially on a brand new computer
architecture.

In the case of LU factorization, there can be many algorithmic choices with respect to
computational and communication aspects of the kernel. The computational aspect of LU
factorization includes the algorithm formulation (inner versus outer product, left- versus right-
looking etc.), blocking strategy (1D or 2D, uniform or adaptive, etc.), the dependency graph
traversal, and threading and multiprocessing strategies. The communication aspect of LU
factorization mostly involves messaging patterns at various stages of the algorithm together with
size-tuning and asynchronicity of these patterns [9].

Finally, we recognize the contextual aspect of auto-tuning. Context here means both the
dependence of data being operated on as well as interaction with other components of the
software and hardware ecosystem. We believe that these issues will have to be addressed at some
point as the HPCS hardware and software ecosystem matures. The detailed analysis of this aspect
exceeds the scope of this study.

11. Program analysis and semi-automatic program tuning

In addition to fully automated performance tuning, we found during the study that an
optimization technique known as guided tuning will be equally important on HPCS systems, as it
is already on current high end supercomputer architectures. A part of this process is
decomposition of functionality and unrelated performance portions of the code. As mentioned
earlier, we find it important to efficiently (in terms of programming effort and the runtime
overhead) compose these portions of the code into a final working executable. In addition,
computational and communication primitives should also allow this mix and match approach as
the developer finds the bottlenecks in the code and attempts to remove them by not only
algorithmic changes but also by mixing-in additional software and hardware capabilities of the
underlying computing platform. We found it indispensable to be able to gather performance data
of a running program and go back to address the performance issues in the appropriate portions of
the code. This was both true for our own codes as well as for other developers that lent us their
codes for study. And we envision this guided tuning to be important at the initial stages of HPCS
platform development when the process of guided tuning will be mostly manual. And later on it
will be important for development of semi-automatic software tools such as compilers and
program analyses tools.

12. Software environment for future DARPA computing platforms

As should be evident from the analysis above, a working compiler is hardly a sufficient
requirement for anything but the most trivial programming task. As the HPCS systems aspire to
address the issues of programmability and scale, we have identified three aspects of code
development that will need the attention of a productive ecosystem:

13

1. Code reuse,
2. Executable generation, and
3. Performance analysis.

The first aspect, code reuse, stresses existence and availability of high performance and high
numerical quality computational kernels. Even though we have chosen a numerical linear algebra
kernel as the main example of this study, we do not envision the users of the future HPCS
systems writing this kind of functionality code themselves. Instead, we see the need for such code
to be developed for the users so they can focus on software that will more directly address the
goals of the HPCS program in terms of scientific progress and national security. Numerical linear
algebra kernels for both dense and sparse problems should be developed as soon as prototype
hardware becomes available and evolve to successfully reach acceptable performance as the
HPCS hardware attains production level status. We believe in open source dissemination of such
software, as it will serve three important purposes: as a warrant of portability (if not across few
HPCS architectures then at the very least across upgrades of a single architecture), as a teaching
tool for the users at high-end performance regimes, and as a starting point for the vendors in
developing highly-tuned versions of binaries for one particular generation of hardware
architecture.

The second aspect, executable generation, stresses the transparency of code generation as well as
both static and dynamic linking. It is important for both low-level kernel and application code
developers to understand and influence the compilation process, especially on the HPCS
platforms, which will feature unprecedented levels of hardware complexity not excluding multi-
tier parallelism and heterogeneous hardware components.

Finally, the third aspect, performance analysis, draws attention to the ability of examining the
execution of code both at runtime and post-mortem. We envision here access to hardware
performance counters and a software profiling interface at various levels of granularity. As was
already stressed before, the current high-end architectures and their interfaces for code execution
introspection are only the starting point for the development of performance analysis tools as the
HPCS hardware is expected to exceed scale and complexity of currently available solutions.

13. Collaboration with the HPCS hardware and language developers

This study increased our collaboration with the HPCS hardware and language developers. Our
primary case study, LU factorization, is part of an important benchmarking effort within HPCS
called the High Performance Computing Challenge (HPC Challenge or HPCC). HPCS hardware
and software developers participated in this effort, which resulted in exchange of information
with respect to hardware potential and software requirements for efficient implementation of the
LU kernel.

Despite its superficial simplicity, the LU kernel presents a few numerical challenges that stress
compliance with the IEEE 754 floating-point standard. A case in point is the treatment of
denormal pivots that, if treated properly, might avoid generation of special floating-point values
such as infinities or not-a-number (NaNs - which are undefined results of a floating-point
operation).

14

Finally, our study reiterated with the vendors the need for unifying the nomenclature so that
various HPCS systems can be compared with respect to raw performance specifications as well as
the achieved performance levels.

14. High performance languages workshop

In January 2007 we participated in a 3-day programming workshop at Rice University. Present at
the meeting were representatives from the HPCS vendors, mostly programming language
developers. HPCS representatives from academia and government labs were also present.

One of the important topics discussed at the workshop was the common messaging runtime. Such
runtimes expose the high-bandwidth and the low-latency of the HPCS platforms to both MPI
library implementations as well as the HPCS languages. The effort regarding the runtime is still
ongoing.

Another broad topic of the meeting was the language features found in different HPCS languages.
The features discussed were:

• multidimensional array syntax and semantics and their relation to other language
features

• object orientation including templating, inheritance, and their relation to the built-in type
system

• support for IEEE 754 floating-point standard: conformance, implementation and
performance.

The organizational items included the discussion about unification of hardware and
programming language nomenclatures as well as the time frame for deliverables and the
milestone schedule. To summarize the findings, it was recognized that, despite the different
wording, all HPCS vendors recognize conceptually similar components in their hardware. The
programming languages relate to these components, again using different nomenclature but at
the same time very similar at the conceptual level. The development of the HPCS languages was
on track with prototype systems already available for the existing hardware platforms.

15. Conclusions

Even with its perceived simplicity, parallel LU factorization presents unique challenges to
language designers and library writers. We have shown that scaling up the available hardware
resources has to be accompanied by programming language tools. If the tools are not provided,
then first, the scaling of the code quickly deteriorates and second, the fraction of the peak
performance observed in a sequential environment can never be achieved in a parallel setup. But
performance is only one part of HPCS’ productivity goal. The other important part is programmer
effort in delivering a well performing code. Both the programming language features and a rich
set of third party libraries are required to achieve this goal.

15

16. Acknowledgment

This material is based on research sponsored by DARPA under agreement number FA8750-06-1-
0239. The US Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation therein.

17. References

[1] Allen E., Chase D., Hallett J., Luchangco V., Maessen J-W., Ryu S., Steele G. L., and Tobin-
Hochstadt S. The Fortress Language Specification. Available at
http://research.sun.com/projects/plrg/Publications/index.html, 2007

[2] Blackford S., Choi J., Cleary A., D'Azevedo E. F., Demmel J. W., Dhillon I. S, Dongarra J.,
Hammarling S., Henry G., Petitet A., Stanley K., Walker D. W., and Whaley R. C.
ScaLAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia,
1997.

[3] Blumofe R. and Leiserson C. “Space-Efficient Scheduling of Multithreaded Computations,”
SIAM J. on Computing, 27, 1 (1998), 202-229.

[4] A. Buttari, J. Dongarra, P. Husbands, J. Kurzak and K. Yelick. “Multithreading for
Synchronization Tolerance in Matrix Factorization,” To Appear in Proceedings of the 2007
SciDAC Conference, Boston, MA, July 2007.

[5] Buttari A., Dongarra J., Kurzak J., Langou J., Luszczek P., and Tomov S. “The Impact of
Multicore on Math Software,” In Proceedings of PARA 2006, Umeå, Sweden, June 2006.

[6] Buttari A., Langou J., Kurzak J., and Dongarra J. Parallel Tiled QR Factorization for
Multicore Architectures. Technical Report UT-CS-07-598, University of Tennessee,
Computer Science Department, July 2007. Also published as LAPACK Working Note 190.

[7] Callahan D., Chamberlain B. L., and Zima, H. P. “The Cascade High Productivity
Language,” In Proceedings of the 9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS 2004), pages 52-60. IEEE
Computer Society, 2004.

[8] Choi J., Dongarra J., Ostrouchov S., Petitet A., Walker D., and Whaley, R.C. “The Design
and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,”
Scientific Programming, 5, (1996), 173-184.

[9] Cicotti P. and Baden S. “Asynchronous programming with Tarragon,” In Proceedings of the
15th IEEE International Symposium on High Performance Distributed Computing, June 19-
23 2006.

[10] Dongarra J., Du Croz J., Duff I., and Hammarling S. Algorithm 679: A set of Level 3 Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16:1-17, March
1990.

[11] Dongarra J., Du Croz J., Duff I., and Hammarling S. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Transactions on Mathematical Software, 16:18-28, March 1990.

[12] Dongarra J, Du Croz J., Hammarling S., and Hanson R. Algorithm 656: An extended set of
FORTRAN Basic Linear Algebra Subprograms. Transactions on Mathematical Software,
14:18-32, March 1988.

http://research.sun.com/projects/plrg/Publications/index.html

16

[13] Dongarra J, Du Croz J., Hammarling S., and Hanson R. An extended set of FORTRAN Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 14:1-17, March
1988.

[14] Dongarra J. and Whaley R. C. A user's guide to the BLACS v1.1. Technical Report UT-CS-
95-281, University of Tennessee Knoxville, March 1995. LAPACK Working Note 94
updated May 5, 1997 (VERSION 1.1).

[15] Ebcioglu K., Saraswat V., and Sarkar, V. “X10: an Experimental Language for High
Productivity Programming of Scalable Systems,” In Proceedings of the P-PHEC 2005
Workshop, held in conjunction with HPCA 2005, 2005.

[16] El-Ghazawi T., Carlson W., Sterling T., and Yelick K. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, 2005.

[17] Husbands P. and Yelick K. “Multi-Threading and One-Sided Communication in Parallel LU
Factorization,” To Appear in Proceedings of SC 07, November 2007

[18] Kurzak J. and Dongarra J. Implementing Linear Algebra Routines on Multi-Core Processors
with Pipelining and a Look Ahead. Technical Report UT-CS-06-581, University of
Tennessee, Computer Science Department, 2006. Also published as LAPACK Working Note
178.

[19] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. The
International Journal of Supercomputer Applications and High Performance Computing, 8,
1994.

[20] Panziera J.-P. and Baron J. “A Highly Efficient Linpack Implementation Based on Shared-
Memory Parallelism,” In Proceedings of the 2005 International Supercomputer Conference,
2005.

[21] Snir M., Otto S., Huss-Lederman S., Walker D., and Dongarra J. MPI: The Complete
Reference - 2nd Edition: Volume 1. The MIT Press. ISBN 0-262-57123-4, 1998.

[22] The Top 500 Supercomputer Sites. Available at: http://www.top500.org, 2007.
[23] UPC Consortium. UPC Language Specification, v1.2. Available at:

http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf, 2005.

http://www.top500.org
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

17

Acronyms

Explanation of acronyms used in this report:

• BLAS – Basic Linear Algebra Subprograms
• BLAS-1 – Level 1 BLAS: operations on vectors
• BLAS-3 – Level 3 BLAS: matrix-matrix operations
• BLACS - Basic Linear Algebra Communication Subprograms
• CAF – Co-array Fortran
• DAG - Directed Acyclic Graph
• DARPA – The Defense Advanced Research Projects Agency
• DGEMM – Double-precision General Matrix-Matrix multiply
• DGER – Double-precision General Rank 1 Update (BLAS)
• DLASWP – Double-precision LAPACK Auxiliary Swap
• DSCAL – Double-precision Scale (BLAS)
• DSWAP - Double-precision Swap (BLAS)
• DTRSM – Double-precision Triangular Matrix Solve Matrix (BLAS)
• GASnet – Global Address Space Networking
• HPCC – High Performance Computing Challenge
• HPCS – High Productivity Computing Systems
• HPF – High Performance Fortran
• HPL – High Performance Linpack benchmark
• ILAENV – Integer LAPACK Auxiliary Environment
• LAPACK – Linear Algebra PACKage
• Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear algebra;
also a benchmark based on one of the Linpack subroutines
• LU – Lower Upper
• MPI – Message Passing Interface
• PBLAS – Parallel BLAS
• PDGETRF – Parallel Double-precision General Triangular Factorization (ScaLAPACK)
• PLASMA – Parallel Linear Algebra for Scalable Multi-core Architectures
• RISC – Reduced Instruction Set Computer
• ScaLAPACK – Scalable LAPACK
• SIMD - Single Instruction Multiple Data
• SLOC – Source Line of Code
• SMP – Symmetric Multiprocessing
• SPMD – Single Program Multiple Data
• UPC – Unified Parallel C
• VLIW – Very Long Instruction Word

